首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10193篇
  免费   2065篇
  国内免费   1392篇
  2024年   15篇
  2023年   468篇
  2022年   234篇
  2021年   408篇
  2020年   774篇
  2019年   747篇
  2018年   692篇
  2017年   752篇
  2016年   704篇
  2015年   696篇
  2014年   714篇
  2013年   816篇
  2012年   540篇
  2011年   508篇
  2010年   490篇
  2009年   623篇
  2008年   605篇
  2007年   535篇
  2006年   460篇
  2005年   418篇
  2004年   361篇
  2003年   251篇
  2002年   220篇
  2001年   193篇
  2000年   210篇
  1999年   145篇
  1998年   143篇
  1997年   93篇
  1996年   101篇
  1995年   117篇
  1994年   87篇
  1993年   63篇
  1992年   50篇
  1991年   39篇
  1990年   35篇
  1989年   28篇
  1988年   31篇
  1987年   22篇
  1986年   29篇
  1985年   29篇
  1984年   23篇
  1983年   24篇
  1982年   37篇
  1981年   18篇
  1980年   31篇
  1979年   29篇
  1978年   8篇
  1977年   8篇
  1976年   8篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows.Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology.Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area.Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.  相似文献   
992.
Background Increasing attention is being focused on the influence of rapid increases in atmospheric CO2 concentration on nutrient cycling in ecosystems. An understanding of how elevated CO2 affects plant utilization and acquisition of phosphorus (P) will be critical for P management to maintain ecosystem sustainability in P-deficient regions.Scope This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants and P acquisition from soil. Several knowledge gaps on elevated CO2-P associations are highlighted.Conclusions Significant increases in P demand by plants are likely to happen under elevated CO2 due to the stimulation of photosynthesis, and subsequent growth responses. Elevated CO2 alters P acquisition through changes in root morphology and increases in rooting depth. Moreover, the quantity and composition of root exudates are likely to change under elevated CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and physiological aspects is needed to improve understanding of how elevated CO2 might affect the use and acquisition of P by plants.  相似文献   
993.
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.  相似文献   
994.
Background and Aims Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants.Methods Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory.Key Results At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13–35 % higher) in all species except two. Survival and establishment was possible for 60–75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success.Conclusions The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.  相似文献   
995.
Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives.Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China.Key Results In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180–240 ppm in the late Pliocene, which is consistent with most other previous estimates.Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are unclear, however, and require further research.  相似文献   
996.
Ground counts during 1959–1968 compared with counts using high resolution (0.6 m2) satellite imagery during 2008–2012 indicated many fewer Weddell seals (Leptonychotes weddellii) at two major molting areas in the western Ross Sea: Edisto Inlet‐Moubray Bay, northern Victoria Land, and McMurdo Sound, southern Victoria Land. Breeding seals have largely disappeared from Edisto‐Moubray, though the breeding population in McMurdo Sound appears to have recovered from harvest in the 1960s. The timing of decline, or perhaps spreading (lower numbers of seals in more places), is unknown but appears unrelated to changes in sea ice conditions. We analyzed both historic and satellite‐derived ice data confirming a large expansion of pack ice mostly offshore of the Ross Sea, and not over the continental shelf (main Weddell seal habitat), and a thinning of fast ice along Victoria Land (conceivably beneficial to seals). Timing of fast ice presence and extent in coves and bays along Victoria Land, remains the same. The reduction in numbers is consistent with an altered food web, the reasons for which are complex. In the context of a recent industrial fishery targeting a seal prey species, a large‐scale seal monitoring program is required to increase understanding of seal population changes.  相似文献   
997.
Motivational changes in animals are likely to be detectable retrospectively through observed changes in behavior. Breeding represents one of the strongest motivational states in mammals, and its timing is often tied to a seasonally optimal suite of environmental and physical conditions. While seasonal changes in behavior may be directly observable in some species, for others that breed cryptically or in difficult to access areas, detecting behavioral changes may only be feasible using data collected remotely. Herein, we explore whether behavioral changes can be used to infer motivational state for a wild, free‐ and wide‐ranging high arctic marine mammal, adult male Atlantic walruses (Odobenus rosmarus rosmarus). Using satellite‐relayed location and dive data from 23 adult male walruses instrumented in the Svalbard Archipelago, we identify seasonal movement to discrete geographic regions deep into winter pack ice. Adult male walrus diving behavior underwent marked seasonal movements between geographical areas that coincided with changes in light regime. At offshore wintering sites adult males (n = 4) shifted from a summer pattern of deep, long benthic dives to much shallower diving. Some males performed similar shallow, winter dive behavior at coastal locations (n = 12) suggesting that breeding might also occur around the coast of Svalbard. However, interpretation of behavioral changes of these coastal individuals was challenging. The presumed breeding sites at the winter off‐shore locations were situated in areas where polynyas are known to occur, making them a predictable resource even if they are located deep inside the winter pack‐ice. We demonstrate that remotely collected behavioral data can be used to identify seasonally explicit changes in the behavior of cryptic species.  相似文献   
998.
Hyuntae Na  Guang Song 《Proteins》2015,83(4):757-770
Ligand migration and binding are central to the biological functions of many proteins such as myoglobin (Mb) and it is widely thought that protein breathing motions open up ligand channels dynamically. However, how a protein exerts its control over the opening and closing of these channels through its intrinsic dynamics is not fully understood. Specifically, a quantitative delineation of the breathing motions that are needed to open ligand channels is lacking. In this work, we present and apply a novel normal mode‐based method to quantitatively delineate what and how breathing motions open ligand migration channels in Mb and its mutants. The motivation behind this work springs from the observation that normal mode motions are closely linked to the breathing motions that are thought to open ligand migration channels. In addition, the method provides a direct and detailed depiction of the motions of each and every residue that lines a channel and can identify key residues that play a dominating role in regulating the channel. The all‐atom model and the full force‐field employed in the method provide a realistic energetics on the work cost required to open a channel, and as a result, the method can be used to efficiently study the effects of mutations on ligand migration channels and on ligand entry rates. Our results on Mb and its mutants are in excellent agreement with MD simulation results and experimentally determined ligand entry rates. Proteins 2015; 83:757–770. © 2015 Wiley Periodicals, Inc.  相似文献   
999.
Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change.  相似文献   
1000.
Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号